Verifying Heisenberg’s error-disturbance relation using a single trapped ion

نویسندگان

  • Fei Zhou
  • Leilei Yan
  • Shijie Gong
  • Zhihao Ma
  • Jiuzhou He
  • Taiping Xiong
  • Liang Chen
  • Wanli Yang
  • Mang Feng
  • Vlatko Vedral
چکیده

Heisenberg's uncertainty relations have played an essential role in quantum physics since its very beginning. The uncertainty relations in the modern quantum formalism have become a fundamental limitation on the joint measurements of general quantum mechanical observables, going much beyond the original discussion of the trade-off between knowing a particle's position and momentum. Recently, the uncertainty relations have generated a considerable amount of lively debate as a result of the new inequalities proposed as extensions of the original uncertainty relations. We report an experimental test of one of the new Heisenberg's uncertainty relations using a single 40Ca+ ion trapped in a harmonic potential. By performing unitary operations under carrier transitions, we verify the uncertainty relation proposed by Busch, Lahti, and Werner (BLW) based on a general error-trade-off relation for joint measurements on two compatible observables. The positive operator-valued measure, required by the compatible observables, is constructed by single-qubit operations, and the lower bound of the uncertainty, as observed, is satisfied in a state-independent manner. Our results provide the first evidence confirming the BLW-formulated uncertainty at a single-spin level and will stimulate broad interests in various fields associated with quantum mechanics.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Disproving Heisenberg’s error-disturbance relation

Recently, Busch, Lahti, and Werner [1] claimed that Heisenberg’s error-disturbance relation can be proved in its original form with new formulations of error and disturbance, in contrast to the theory proposed by the present author [2–5] and confirmed by recent experiments [6–9]. Despite their claim, it is shown here that a class of solvable models of position measurement with explicit interact...

متن کامل

Certainty in Heisenberg’s uncertainty principle: Revisiting definitions for estimation errors and disturbance

We revisit the definitions of error and disturbance recently used in error-disturbance inequalities derived by Ozawa and others by expressing them in the reduced system space. The interpretation of the definitions as meansquared deviations relies on an implicit assumption that is generally incompatible with the Bell-Kochen-SpeckerSpekkens contextuality theorems, and which results in averaging t...

متن کامل

Uncertainty Relations for Noise and Disturbance in Generalized Quantum Measurements

Heisenberg’s uncertainty relation for measurement noise and disturbance states that any position measurement with noise ǫ brings the momentum disturbance not less than h̄/2ǫ. This relation holds only for restricted class of measuring apparatuses. Here, Heisenberg’s uncertainty relation is generalized to a relation that holds for all the possible quantum measurements, from which conditions are ob...

متن کامل

Dynamical evolution of nonclassical properties in cavity quantum electrodynamics with a single trapped ion

In this paper, by considering a system consisting of a single two-level trapped ion interacting with a single-mode quantized radiation field inside a lossless cavity, the temporal evolution of the ionic and the cavity-field quantum statistical properties including photon-counting statistics, quantum fluctuations of the field quadratures and quantum fluctuations of the ionic dipole variables are...

متن کامل

Measuring measurement–disturbance relationships with weak values

Using formal definitions for the measurement precision and the disturbance (measurement back-action) η, Ozawa (2003 Phys. Rev. A 67 042105) has shown that Heisenberg’s claimed relation between these quantities is false in general. Here, we show that the quantities introduced by Ozawa can be determined experimentally, using no prior knowledge of the measurement under investigation—both quantitie...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 2  شماره 

صفحات  -

تاریخ انتشار 2016